


1

Introduction

⋄ 2x North Carolina State Championship 
Inspire Award Winner

⋄ 2022 World Championship Innovate Award 
Winner

⋄ 2023 World Championship Division Inspire 
Award Finalist

⋄ 5th year team 

⋄ 2023 Software Lead
⋄ 5th Year FTC

#16461 Infinite Turtles Ryan

⋄ Software Team
⋄ 1st Year FTC

Asher



2

Why even care?

More than robots!

⋄ Job transferable skills!
⋄ Get familiar with 

programming problem 
solving skills and 
structuring code

Performance

⋄ Easily recoverable code
⋄ Easy to make changes
⋄ Fast to debug
⋄ Easier to collaborate
⋄ Less headaches!

⋄ Many people see programming in FTC as a “Means to an end”



3

What should I consider?

⋄ We’ll be going over:
○ Kotlin vs. Java
○ The pitfall of OpMode separation
○ The importance of a “Hardware Map”
○ Modularizing your code
○ Threading?
○ Taking it further: CommandBase
○ Pre-existing solutions, including Nautilus



4

Kotlin vs. Java

Both Kotlin and Java are JVM-Based languages: They run on the Java 
Virtual Machine
This means both languages can “interop,” or work with each other in 
the same project.

There’s no true “one better option”

JavaKotlin



5

Kotlin vs. Java

Java

Kotlin



6

Common Pitfalls



7

Common Pitfalls

Raw hardware access in the OpMode!
Why is this bad?
Accessing raw hardware in an 
OpMode makes it easy to 
accidentally have different 
functionality in different OpModes.
When doing hardware logic in an 
OpMode, it doesn’t transfer to other 
OpModes!



8

Common Pitfalls

Drive logic in the main OpMode
Why is this bad?
It’s not awful, but in most cases drive 
logic should be shared between all 
OpModes as much as possible. The 
abstraction makes it easy to change 
hardware!



9

Why is raw hardware logic in OpModes bad?

Structure

⋄ It can be confusing and 
annoying to have to copy 
values like lift tuning 
between OpModes.

⋄ If you swap out a 
mechanism on your bot, 
the transition is cleaner!

Organization

⋄ Having “subsystems,” or 
individual mechanisms on 
your robot separate in 
code is great for 
organization!



10

Your own Robot/HardwareMap

A very common first step toward organization for teams is separating 
all of their hardware initialization into a “Robot” or “HardwareMap” 
class.



Your own Robot/HardwareMap

The Robot class contains all 
references to “subsystems” and 
individual hardware devices.

It is shared between all OpModes, 
and created on the initialization of 
them.

#16461’s hardware map in UG
11



Robot
⋄ Only place that does raw hardware access other 
⋄ than subsystems
⋄ Contains all subsystems
⋄ Is shared between all opmodes

Subsystems & Robots

Subsystem
⋄ Encapsulates the 

functionality of 
hardware

Lift
⋄ Contains an 

amount of motors
⋄ Manages the 

control of the 
motors to go to a 
certain height

Drivetrain
⋄ Contains all drive 

motors.
⋄ Exposes a “drive” 

method that takes 
a direction to 
drive in.

12



Threading?

Although threading is possible in FTC, there are a few main 
downsides, especially as a beginner team to advanced software:

⋄ The Lynx Hardware Manager used for FTC is blocking. This means 
without modifications, doing hardware calls on multiple threads can 
cause extreme performance issues in seemingly unexpected ways.

⋄ Threading related bugs such as race conditions can be incredibly 
hard to debug!

⋄ A command-based system can achieve very similar results!

13



Let’s break it down- Commands

Every command is an individual action, that specifies 4 things about 
itself:

Start
An action that happens when the 
command is first added

Tick
An action that happens every single loop 
that the command is active

End
An action that happens when the 
command ends, or stops ticking

Is Complete
Every single tick, the command is 
evaluated to see if it is complete. If it is, 
execution stops.

You can think of them as miniature OpModes.
14



Robot 

Commands

Subsystem
⋄ Encapsulates the 

functionality of 
hardware

Lift
⋄ Contains an 

amount of motors
⋄ Manages the 

control of the 
motors to go to a 
certain height

Drivetrain
⋄ Contains all drive 

motors.
⋄ Exposes a “drive” 

method that takes 
a direction to 
drive in.

Lift Move Command
⋄ Init: Sets the target position of the 

lift
⋄ Tick: Nothing
⋄ End: Nothing
⋄ Is Complete: When the lift is 

within a certain tolerance of the 
target position

15



Command Chaining

Linear Series Command

Lift Primer Command Lift Mover Command
Height of 9.2
Tolerance of 0.5

Deposit Command Lift Return 
Command

16



Pre-Structuring

Driver Controlled Example
Initialize all hardware (Bulky piece of 
code!)

When button is pressed:
- Move lift with to a specific point.

Mecanum drive kinematics & movement

Autonomous Example
Initialize all hardware (Bulky piece of 
code!)

Mecanum drive kinematics & movement 
to follow path
Move lift to a specific point

Duplicated bulky code
This can be improved!

17



Post-Structuring

Driver Controlled Example

When button is pressed, run Lift Move 
Command

Run Joystick Drive Command

Autonomous Example

Run Path Follower Command with a 
path.

Run Lift Move Command

Robot 
Lift
⋄ Contains an 

amount of motors
⋄ Manages the 

control of the 
motors to go to a 
certain height

Drivetrain
⋄ Contains all drive 

motors.
⋄ Exposes a “drive” 

method that takes 
a direction to 
drive in.

Lift Move

Joystick Drive

Path Follower

18



How can I structure my code like this?
Command-Based Implementations

A good option to consider, and our recommended one, is making your 
own!
It’s always a good learning opportunity, and you can explore different 
structures much more.

19



Command-Based Implementations
FTCLib

Pros:
Pretty good documentation

Established

Cons:
Shows its age- Doesn’t follow Java conventions

Clunky at times, and the scheduler can be esoteric

20



Command-Based Implementations

Work in progress- Not released yet.

Nautilus is a modular culmination of the work of our team over the 
past few years in FTC programming in Kotlin.

21



Command-Based Implementations

22



Command-Based Implementations

23



Command-Based Implementations

Keep up to date with Nautilus!

nautilus.mcr.club
24



⋄ Separate logic away from OpModes
⋄ Don’t use threading unless necessary (machine vision)
⋄ Separate commands, subsystems, and the robot from OpModes.
⋄ Experiment! No one code structure will work for everyone.

Main Takeaways

25



Contacts and Help
We are both from 16461, a team based in Southeast Charlotte, and are occasionally able to help in-person in the Charlotte Metro 

area.

We can be contacted with our emails at asher@mcr.club and ryan@mcr.club, please CC a coach on your communications.
We can be contacted on discord @ashermyers and @ryanhcode, preferably being pinged on the NCFTC or 16461 discord.

Teams can join our discord and gain access to a help channel at https://discord.gg/nEFb7X5BUR 
We recommend teams join the NCFTC discord for help from other state teams at https://discord.gg/cEhWHYBmvU 

We also recommend teams join the global FTC discord, partially moderated by our team, at 
https://discord.gg/first-tech-challenge

This presentation and all other 16461 kickoff presentations can be found on 16461’s website at https://16461.mcr.club

https://16461.mcr.club
https://discord.gg/nEFb7X5BUR 

https://discord.gg/first-tech-challengehttps://discord.gg/cEhWHYBmvU

@infiniteturtles_16461

https://discord.gg/nEFb7X5BUR
https://discord.gg/cEhWHYBmvU
https://discord.gg/first-tech-challenge
https://16461.mcr.club
https://16461.mcr.club
https://discord.gg/nEFb7X5BUR
https://discord.gg/first-tech-challenge
https://discord.gg/cEhWHYBmvU

